Quantcast

Science

Toxic effects of the easily avoidable phthalates and parabens.

Abstract

"Some environmental toxins like DDT and other chlorinated compounds accumulate in the body because of their fat-soluble nature. Other compounds do not stay long in the body, but still cause toxic effects during the time they are present. For serious health problems to arise, exposure to these rapidly-clearing compounds must occur on a daily basis. Two such classes of compounds are the phthalate plasticizers and parabens, both of which are used in many personal care products, some medications, and even foods and food preservation. The phthalates are commonly found in foods and household dust. Even though they have relatively short half-lives in humans, phthalates have been associated with a number of serious health problems, including infertility, testicular dysgenesis, obesity, asthma, and allergies, as well as leiomyomas and breast cancer. Parabens, which can be dermally absorbed, are present in many cosmetic products, including antiperspirants. Their estrogenicity and tissue presence are a cause for concern regarding breast cancer. Fortunately, these compounds are relatively easy to avoid and such steps can result in dramatic reductions of urinary levels of these compounds."

[full text] 

 

Evaluation of a Screening System for Obesogenic Compounds: Screening of Endocrine Disrupting Compounds and Evaluation of the PPAR Dependency of the Effect

Abstract

"Recently the environmental obesogen hypothesis has been formulated, proposing a role for endocrine disrupting compounds (EDCs) in the development of obesity. To evaluate this hypothesis, a screening system for obesogenic compounds is urgently needed. In this study, we suggest a standardised protocol for obesogen screening based on the 3T3-L1 cell line, a well-characterised adipogenesis model, and direct fluorescent measurement using Nile red lipid staining technique. In a first phase, we characterised the assay using the acknowledged obesogens rosiglitazone and tributyltin. Based on the obtained dose-response curves for these model compounds, a lipid accumulation threshold value was calculated to ensure the biological relevance and reliability of statistically significant effects. This threshold based method was combined with the well described strictly standardized mean difference (SSMD) method for classification of non-, weak- or strong obesogenic compounds. In the next step, a range of EDCs, used in personal and household care products (parabens, musks, phthalates and alkylphenol compounds), were tested to further evaluate the obesogenicity screening assay for its discriminative power and sensitivity. Additionally, the peroxisome proliferator activated receptor γ (PPARγ) dependency of the positive compounds was evaluated using PPARγ activation and antagonist experiments. Our results showed the adipogenic potential of all tested parabens, several musks and phthalate compounds and bisphenol A (BPA). PPARγ activation was associated with adipogenesis for parabens, phthalates and BPA, however not required for obesogenic effects induced by Tonalide, indicating the role of other obesogenic mechanisms for this compound."

[full text] 

 

Endocrine-disrupting chemicals and obesity development in humans: a review.

Abstract

"This study reviewed the literature on the relations between exposure to chemicals with endocrine-disrupting abilities and obesity in humans. The studies generally indicated that exposure to some of the endocrine-disrupting chemicals was associated with an increase in body size in humans. The results depended on the type of chemical, exposure level, timing of exposure and gender. Nearly all the studies investigating dichlorodiphenyldichloroethylene (DDE) found that exposure was associated with an increase in body size, whereas the results of the studies investigating polychlorinated biphenyl (PCB) exposure were depending on dose, timing and gender. Hexachlorobenzene, polybrominated biphenyls, beta-hexachlorocyclohexane, oxychlordane and phthalates were likewise generally associated with an increase in body size. Studies investigating polychlorinated dibenzodioxins and polychlorinated dibenzofurans found either associations with weight gain or an increase in waist circumference, or no association. The one study investigating relations with bisphenol A found no association. Studies investigating prenatal exposure indicated that exposure in utero may cause permanent physiological changes predisposing to later weight gain. The study findings suggest that some endocrine disruptors may play a role for the development of the obesity epidemic, in addition to the more commonly perceived putative contributors."

[link] 

 

PPAR-mediated activity of phthalates: A link to the obesity epidemic?

Abstract

"The endocrine disruption hypothesis asserts that exposure to small amounts of some chemicals in the environment may interfere with the endocrine system and lead to harmful effects in wildlife and humans. Many of these chemicals may interact with members of the nuclear receptor superfamily. Peroxisome proliferator-activated receptors (PPARs) are such candidate members, which interact with many different endogenous and exogenous lipophilic compounds. More particularly, the roles of PPARs in lipid and carbohydrate metabolism raise the question of their activation by a sub-class of pollutants, tentatively named "metabolic disrupters". Phthalates are abundant environmental micro-pollutants in Europe and North America and may belong to this class. Mono-ethyl-hexyl-phthalate (MEHP), a metabolite of the widespread plasticizer di-ethyl-hexyl-phthalate (DEHP), has been found in exposed organisms and interacts with all three PPARs. A thorough analysis of its interactions with PPARgamma identified MEHP as a selective PPARgamma modulator, and thus a possible contributor to the obesity epidemic."

[link]