Quantcast

Paleolithic diet

Beyond the Paleolithic prescription: incorporating diversity and flexibility in the study of human diet evolution.

Abstract

"Evolutionary paradigms of human health and nutrition center on the evolutionary discordance or "mismatch" model in which human bodies, reflecting adaptations established in the Paleolithic era, are ill-suited to modern industrialized diets, resulting in rapidly increasing rates of chronic metabolic disease. Though this model remains useful, its utility in explaining the evolution of human dietary tendencies is limited. The assumption that human diets are mismatched to the evolved biology of humans implies that the human diet is instinctual or genetically determined and rooted in the Paleolithic era. This review looks at current research indicating that human eating habits are learned primarily through behavioral, social, and physiological mechanisms that start in utero and extend throughout the life course. Adaptations that appear to be strongly genetic likely reflect Neolithic, rather than Paleolithic, adaptations and are significantly influenced by human niche-constructing behavior. Several examples are used to conclude that incorporating a broader understanding of both the evolved mechanisms by which humans learn and imprint eating habits and the reciprocal effects of those habits on physiology would provide useful tools for structuring more lasting nutrition interventions."

[full text] 

 

Subjective satiety and other experiences of a Paleolithic diet compared to a diabetes diet in patients with type 2 diabetes.

Abstract

"BACKGROUND:

We found marked improvement of glycemic control and several cardiovascular risk factors in patients with type 2 diabetes given advice to follow a Paleolithic diet, as compared to a diabetes diet. We now report findings on subjective ratings of satiety at meal times and participants' other experiences of the two diets from the same study.

METHODS:

In a randomized cross-over study, 13 patients with type 2 diabetes (3 women and 10 men), were instructed to eat a Paleolithic diet based on lean meat, fish, fruits, vegetables, root vegetables, eggs and nuts, and a diabetes diet designed in accordance with dietary guidelines, during two consecutive 3-month periods. In parallel with a four-day weighed food record, the participants recorded their subjective rating of satiety. Satiety quotients were calculated as the intra-meal quotient of change in satiety during a meal and consumed energy or weight of food and drink for that specific meal. All participants answered the same three open-ended questions in a survey following each diet: "What thoughts do you have about this diet?", "Describe your positive and negative experiences with this diet" and "How do you think this diet has affected your health?".

RESULTS:

The participants were equally satiated on both diets. The Paleolithic diet resulted in greater satiety quotients for energy per meal (p = 0.004), energy density per meal (p = 0.01) and glycemic load per meal (p = 0.02). The distribution of positive and negative comments from the survey did not differ between the two diets, and the comments were mostly positive. Among comments relating to recurring topics, there was no difference in distribution between the two diets for comments relating to tastelessness, but there was a trend towards more comments on the Paleolithic diet being satiating and improving blood sugar values, and significantly more comments on weight loss and difficulty adhering to the Paleolithic diet.

CONCLUSIONS:

Paleolithic diet is more satiating per calorie than a diabetes diet in patients with type 2 diabetes. The Paleolithic diet was seen as instrumental in weight loss, albeit it was difficult to adhere to."

[full text] 

Up-regulation of intracellular signalling pathways may play a central pathogenic role in hypertension, atherogenesis, insulin resistance, and cancer promotion--the 'PKC syndrome'

"Abstract

The modern diet is greatly different from that of our paleolithic forebears' in a number of respects. There is reason to believe that many of these dietary shifts can up-regulate intracellular signalling pathways mediated by free intracellular calcium and protein kinase C, particularly in vascular smooth muscle cells; this disorder of intracellular regulation is given the name 'PKC syndrome'. PKC syndrome may entail either a constitutive activation of these pathways, or a sensitization to activation by various agonists. The modern dietary perturbations which tend to induce PKC syndrome may include increased dietary fat and sodium, and decreased intakes of omega-3 fats, potassium, calcium, magnesium and chromium. Insulin resistancemay be both a cause and effect of PKC syndrome, and weight reduction and aerobic training should act to combat this disorder. PKC syndrome sensitizes vascular smooth muscle cells to both vasoconstrictors and growth factors, and thus promotes both hypertension and atherogenesis. In platelets, it induces hyperaggregability, while in the microvasculature it may be a mediator of diabetic microangiopathy. In vascular endothelium, intimal macrophages, and hepatocytes, increased protein kinase C activity can be expected to increase cardiovascular risk. Up-regulation of protein kinase C in stem cells may also play a role in the promotion of 'Western' fat-related cancers. Practical guidelines for combatting PKC syndrome are suggested."

[link]

The paradoxical nature of hunter-gatherer diets: meat-based, yet non-atherogenic

"Abstract

OBJECTIVE:

Field studies of twentieth century hunter-gathers (HG) showed them to be generally free of the signs and symptoms of cardiovascular disease (CVD). Consequently, the characterization of HG diets may have important implications in designing therapeutic diets that reduce the risk for CVD in Westernized societies. Based upon limited ethnographic data (n=58 HG societies) and a single quantitative dietary study, it has been commonly inferred that gathered plant foods provided the dominant energy source in HG diets.

METHOD AND RESULTS:

In this review we have analyzed the 13 known quantitative dietary studies of HG and demonstrate that animal food actually provided the dominant (65%) energy source, while gathered plant foods comprised the remainder (35%). This data is consistent with a more recent, comprehensive review of the entire ethnographic data (n=229 HG societies) that showed the mean subsistence dependence upon gathered plant foods was 32%, whereas it was 68% for animal foods. Other evidence, including isotopic analyses of Paleolithic hominid collagen tissue, reductions in hominid gut size, low activity levels of certain enzymes, and optimal foraging data all point toward a long history of meat-based diets in our species. Because increasing meat consumption in Western diets is frequently associated with increased risk for CVD mortality, it is seemingly paradoxicalthat HG societies, who consume the majority of their energy from animal food, have been shown to be relatively free of the signs and symptoms of CVD.

CONCLUSION:

The high reliance upon animal-based foods would not have necessarily elicited unfavorable blood lipid profiles because of the hypolipidemic effects of high dietary protein (19-35% energy) and the relatively low level of dietary carbohydrate (22-40% energy). Although fat intake (28-58% energy) would have been similar to or higher than that found in Western diets, it is likely that important qualitative differences in fat intake, including relatively high levels of MUFA and PUFA and a lower omega-6/omega-3 fatty acid ratio, would have served to inhibit the development of CVD. Other dietary characteristics including high intakes of antioxidants, fiber, vitamins and phytochemicals along with a low salt intake may have operated synergistically with lifestyle characteristics (more exercise, less stress and no smoking) to further deter the development of CVD."

[link]