Quantcast

diabetes

Subjective satiety and other experiences of a Paleolithic diet compared to a diabetes diet in patients with type 2 diabetes.

Abstract

"BACKGROUND:

We found marked improvement of glycemic control and several cardiovascular risk factors in patients with type 2 diabetes given advice to follow a Paleolithic diet, as compared to a diabetes diet. We now report findings on subjective ratings of satiety at meal times and participants' other experiences of the two diets from the same study.

METHODS:

In a randomized cross-over study, 13 patients with type 2 diabetes (3 women and 10 men), were instructed to eat a Paleolithic diet based on lean meat, fish, fruits, vegetables, root vegetables, eggs and nuts, and a diabetes diet designed in accordance with dietary guidelines, during two consecutive 3-month periods. In parallel with a four-day weighed food record, the participants recorded their subjective rating of satiety. Satiety quotients were calculated as the intra-meal quotient of change in satiety during a meal and consumed energy or weight of food and drink for that specific meal. All participants answered the same three open-ended questions in a survey following each diet: "What thoughts do you have about this diet?", "Describe your positive and negative experiences with this diet" and "How do you think this diet has affected your health?".

RESULTS:

The participants were equally satiated on both diets. The Paleolithic diet resulted in greater satiety quotients for energy per meal (p = 0.004), energy density per meal (p = 0.01) and glycemic load per meal (p = 0.02). The distribution of positive and negative comments from the survey did not differ between the two diets, and the comments were mostly positive. Among comments relating to recurring topics, there was no difference in distribution between the two diets for comments relating to tastelessness, but there was a trend towards more comments on the Paleolithic diet being satiating and improving blood sugar values, and significantly more comments on weight loss and difficulty adhering to the Paleolithic diet.

CONCLUSIONS:

Paleolithic diet is more satiating per calorie than a diabetes diet in patients with type 2 diabetes. The Paleolithic diet was seen as instrumental in weight loss, albeit it was difficult to adhere to."

[full text] 

Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements.

Abstract

"The negative impact of consuming sugar-sweetened beverages on weight and other health outcomes has been increasingly recognized; therefore, many people have turned to high-intensity sweeteners like aspartame, sucralose, and saccharin as a way to reduce the risk of these consequences. However, accumulating evidence suggests that frequent consumers of these sugar substitutes may also be at increased risk of excessive weight gain, metabolic syndrome, type 2 diabetes, and cardiovascular disease. This paper discusses these findings and considers the hypothesis that consuming sweet-tasting but noncaloric or reduced-calorie food and beverages interferes with learned responses that normally contribute to glucose and energy homeostasis. Because of this interference, frequent consumption of high-intensity sweeteners may have the counterintuitive effect of inducing metabolic derangements."

[link] 

 

Endocrine-Disrupting Chemicals: Associated Disorders and Mechanisms of Action

Abstract

"The incidence and/or prevalence of health problems associated with endocrine-disruption have increased. Many chemicals have endocrine-disrupting properties, including bisphenol A, some organochlorines, polybrominated flame retardants, perfluorinated substances, alkylphenols, phthalates, pesticides, polycyclic aromatic hydrocarbons, alkylphenols, solvents, and some household products including some cleaning products, air fresheners, hair dyes, cosmetics, and sunscreens. Even some metals were shown to have endocrine-disrupting properties. Many observations suggesting that endocrine disruptors do contribute to cancer, diabetes, obesity, the metabolic syndrome, and infertility are listed in this paper. An overview is presented of mechanisms contributing to endocrine disruption. Endocrine disruptors can act through classical nuclear receptors, but also through estrogen-related receptors, membrane-bound estrogen-receptors, and interaction with targets in the cytosol resulting in activation of the Src/Ras/Erk pathway or modulation of nitric oxide. In addition, changes in metabolism of endogenous hormones, cross-talk between genomic and nongenomic pathways, cross talk with estrogen receptors after binding on other receptors, interference with feedback regulation and neuroendocrine cells, changes in DNA methylation or histone modifications, and genomic instability by interference with the spindle figure can play a role. Also it was found that effects of receptor activation can differ in function of the ligand."

[link] 

Impact of environmental endocrine disrupting chemicals on the development of obesity.

Abstract

"Environmental chemicals with hormone-like activity can disrupt programming of endocrine signaling pathways during development and result in adverse effects, some of which may not be apparent until much later in life. Recent reports link exposure to environmental endocrine disrupting chemicals during development with adverse health consequences, including obesity and diabetes. These particular diseases are quickly becoming significant public health problems and are fast reaching epidemic proportions worldwide. This review summarizes data from experimental animals and humans which support an association of endocrine disrupting chemicals, such as diethylstilbestrol, bisphenol A, phytoestrogens, phthalates, and organotins, with the development of obesity. Potential mechanisms are summarized and future research needs are discussed."

[link]